Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Injury ; 55(5): 111393, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326215

RESUMEN

BACKGROUND: Blunt chest injury is associated with significant adverse health outcomes. A chest injury care bundle (ChIP) was developed for patients with blunt chest injury presenting to the emergency department. ChIP implementation resulted in increased health service use, decreased unplanned Intensive Care Unit admissions and non-invasive ventilation use. In this paper, we report on the financial implications of implementing ChIP and quantify costs/savings. METHODS: This was a controlled pre-and post-test study with two intervention and two non-intervention sites. The primary outcome measure was the treatment cost of hospital admission. Costs are reported in Australian dollars (AUD). A generalised linear model (GLM) estimated patient episode treatment costs at ChIP intervention and non-intervention sites. Because healthcare cost data were positive-skewed, a gamma distribution and log-link function were applied. RESULTS: A total of 1705 patients were included in the cost analysis. The interaction (Phase x Treatment) was positive but insignificant (p = 0.45). The incremental cost per patient episode at ChIP intervention sites was estimated at $964 (95 % CI, -966 - 2895). The very wide confidence intervals reflect substantial differences in cost changes between individual sites Conclusions: The point estimate of the cost of the ChIP care bundle indicated an appreciable increase compared to standard care, but there is considerable variability between sites, rendering the finding statistically non-significant. The impact on short- and longer-term costs requires further quantification.


Asunto(s)
Paquetes de Atención al Paciente , Traumatismos Torácicos , Humanos , Australia , Costos de la Atención en Salud , Hospitalización , Análisis Costo-Beneficio
2.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37108119

RESUMEN

Sporadic Alzheimer's disease (sAD) represents a serious and growing worldwide economic and healthcare burden. Almost 95% of current AD patients are associated with sAD as opposed to patients presenting with well-characterized genetic mutations that lead to AD predisposition, i.e., familial AD (fAD). Presently, the use of transgenic (Tg) animals overexpressing human versions of these causative fAD genes represents the dominant research model for AD therapeutic development. As significant differences in etiology exist between sAD and fAD, it is perhaps more appropriate to develop novel, more sAD-reminiscent experimental models that would expedite the discovery of effective therapies for the majority of AD patients. Here we present the oDGal mouse model, a novel model of sAD that displays a range of AD-like pathologies as well as multiple cognitive deficits reminiscent of AD symptomology. Hippocampal cognitive impairment and pathology were delayed with N-acetyl-cysteine (NaC) treatment, which strongly suggests that reactive oxygen species (ROS) are the drivers of downstream pathologies such as elevated amyloid beta and hyperphosphorylated tau. These features demonstrate a desired pathophenotype that distinguishes our model from current transgenic rodent AD models. A preclinical model that presents a phenotype of non-genetic AD-like pathologies and cognitive deficits would benefit the sAD field, particularly when translating therapeutics from the preclinical to the clinical phase.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Conocimiento , Ratones , Humanos , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Memoria , Animales Modificados Genéticamente , Modelos Animales de Enfermedad
3.
BMC Health Serv Res ; 21(1): 1318, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34886873

RESUMEN

BACKGROUND: Patients are at risk of deterioration on discharge from an emergency department (ED) to a ward, particularly in the first 72 h. The implementation of a structured emergency nursing framework (HIRAID) in regional New South Wales (NSW), Australia, resulted in a 50% reduction of clinical deterioration related to emergency nursing care. To date the cost implications of this are unknown. The aim of this study was to determine any net financial benefits arising from the implementation of the HIRAID emergency nursing framework. METHODS: This retrospective cohort study was conducted between March 2018 and February 2019 across two hospitals in regional NSW, Australia. Costs associated with the implementation of HIRAID at the study sites were calculated using an estimate of initial HIRAID implementation costs (AUD) ($492,917) and ongoing HIRAID implementation costs ($134,077). Equivalent savings per annum (i.e. in less patient deterioration) were calculated using projected estimates of ED admission and patient deterioration episodes via OLS regression with confidence intervals for incremental additional deterioration costs per episode used as the basis for scenario analysis. RESULTS: The HIRAID-equivalent savings per annum exceed the costs of implementation under all scenarios (Conservative, Expected and Optimistic). The estimated preliminary savings to the study sites per annum was $1,914,252 with a payback period of 75 days. Conservative projections estimated a net benefit of $1,813,760 per annum by 2022-23. The state-wide projected equivalent savings benefits of HIRAID equalled $227,585,008 per annum, by 2022-23. CONCLUSIONS: The implementation of HIRAID reduced costs associated with resources consumed from patient deterioration episodes. The HIRAID-equivalent savings per annum to the hospital exceed the costs of implementation across a range of scenarios, and upscaling would result in significant patient and cost benefit.


Asunto(s)
Deterioro Clínico , Enfermería de Urgencia , Ahorro de Costo , Análisis Costo-Beneficio , Servicio de Urgencia en Hospital , Humanos , Estudios Retrospectivos
4.
Resuscitation ; 166: 49-54, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34314776

RESUMEN

AIMS: This study aimed to quantify the health economic treatment costs of clinical deterioration of patients within 72 h of admission via the emergency department. METHODS: This study was conducted between March 2018 and February 2019 in two hospitals in regional New South Wales, Australia. All patients admitted via the emergency department were screened for clinical deterioration (defined as initiation of a medical emergency team call, cardiac arrest or unplanned admission to Intensive Care Unit) within 72 h through the site clinical deterioration databases. Patient characteristics, including pre-existing conditions, diagnosis and administrative data were collected. RESULTS: 1600 patients clinically deteriorated within 72 h of hospital admission. Linked treatment cost data were available for 929 (58%) of these patients across 352 Australian Refined Diagnosis Related Groups. The average (standard deviation) treatment costs for patients who deteriorated within 72 h was $26,778 ($34,007) compared to $7727 ($12,547). The average hospital length of stay of the deterioration group was nearly 8 days longer than patients without deterioration. When controlling for length of stay and Australian Refined Diagnosis Related Group codes, the incremental cost per episode of deterioration was $14,134. CONCLUSION: Clinical deterioration within 72 h of admission is associated with increased treatment costs irrespective of diagnosis, hospital length of stay and age. Implementation of interventions known to prevent patient deterioration require evaluation.


Asunto(s)
Deterioro Clínico , Australia/epidemiología , Servicio de Urgencia en Hospital , Hospitalización , Humanos , Pacientes Internos , Tiempo de Internación
5.
Sci Rep ; 8(1): 3902, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500363

RESUMEN

Disruption of the insulin-PI3K-Akt signalling pathway in kidney podocytes causes endoplasmic reticulum (ER) stress, leading to podocyte apoptosis and proteinuria in diabetic nephropathy. We hypothesised that by improving insulin sensitivity we could protect podocytes from ER stress. Here we use established activating transcription factor 6 (ATF6)- and ER stress element (ERSE)-luciferase assays alongside a novel high throughput imaging-based C/EBP homologous protein (CHOP) assay to examine three models of improved insulin sensitivity. We find that by improving insulin sensitivity at the level of the insulin receptor (IR), either by IR over-expression or by knocking down the negative regulator of IR activity, protein tyrosine-phosphatase 1B (PTP1B), podocytes are protected from ER stress caused by fatty acids or diabetic media containing high glucose, high insulin and inflammatory cytokines TNFα and IL-6. However, contrary to this, knockdown of the negative regulator of PI3K-Akt signalling, phosphatase and tensin homolog deleted from chromosome 10 (PTEN), sensitizes podocytes to ER stress and apoptosis, despite increasing Akt phosphorylation. This indicates that protection from ER stress is conferred through not just the PI3K-Akt pathway, and indeed we find that inhibiting the MEK/ERK signalling pathway rescues PTEN knockdown podocytes from ER stress.


Asunto(s)
Estrés del Retículo Endoplásmico , Fosfatidilinositol 3-Quinasas/metabolismo , Podocitos/fisiología , Receptor de Insulina/metabolismo , Transducción de Señal , Animales , Apoptosis , Células Cultivadas , Insulina/metabolismo , Ratones , Fosfohidrolasa PTEN/metabolismo , Fosforilación , Podocitos/citología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo
6.
Hortic Res ; 4: 17003, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28243452

RESUMEN

The apple (Malus×domestica) cultivar Honeycrisp has become important economically and as a breeding parent. An earlier study with SSR markers indicated the original recorded pedigree of 'Honeycrisp' was incorrect and 'Keepsake' was identified as one putative parent, the other being unknown. The objective of this study was to verify 'Keepsake' as a parent and identify and genetically describe the unknown parent and its grandparents. A multi-family based dense and high-quality integrated SNP map was created using the apple 8 K Illumina Infinium SNP array. This map was used alongside a large pedigree-connected data set from the RosBREED project to build extended SNP haplotypes and to identify pedigree relationships. 'Keepsake' was verified as one parent of 'Honeycrisp' and 'Duchess of Oldenburg' and 'Golden Delicious' were identified as grandparents through the unknown parent. Following this finding, siblings of 'Honeycrisp' were identified using the SNP data. Breeding records from several of these siblings suggested that the previously unreported parent is a University of Minnesota selection, MN1627. This selection is no longer available, but now is genetically described through imputed SNP haplotypes. We also present the mosaic grandparental composition of 'Honeycrisp' for each of its 17 chromosome pairs. This new pedigree and genetic information will be useful in future pedigree-based genetic studies to connect 'Honeycrisp' with other cultivars used widely in apple breeding programs. The created SNP linkage map will benefit future research using the data from the Illumina apple 8 and 20 K and Affymetrix 480 K SNP arrays.

7.
PLoS One ; 11(1): e0146366, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26730956

RESUMEN

Autism spectrum disorders (ASDs) are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD. Mutations in the histone acetyltransferase CREB binding protein (CBP, CREBBP) cause Rubinstein-Taybi Syndrome (RTS), a developmental disorder that includes ASD-like symptoms. Recently, genomic studies involving large numbers of ASD patient families have theoretically modeled CBP and its paralog p300 (EP300) as critical hubs in ASD-associated protein and gene interaction networks, and have identified de novo missense mutations in highly conserved residues of the CBP acetyltransferase and CH1 domains. Here we provide animal model evidence that supports this notion that CBP and its CH1 domain are relevant to autism. We show that mice with a deletion mutation in the CBP CH1 (TAZ1) domain (CBPΔCH1/ΔCH1) have an RTS-like phenotype that includes ASD-relevant repetitive behaviors, hyperactivity, social interaction deficits, motor dysfunction, impaired recognition memory, and abnormal synaptic plasticity. Our results therefore indicate that loss of CBP CH1 domain function contributes to RTS, and possibly ASD, and that this domain plays an essential role in normal motor function, cognition and social behavior. Although the key physiological functions affected by ASD-associated mutation of epigenetic regulators have been enigmatic, our findings are consistent with theoretical models involving CBP and p300 in ASD, and with a causative role for recently described ASD-associated CBP mutations.


Asunto(s)
Trastorno Autístico/genética , Proteína de Unión a CREB/genética , Histona Acetiltransferasas/genética , Mutación , Síndrome de Rubinstein-Taybi/genética , Análisis de Varianza , Animales , Trastorno Autístico/enzimología , Trastorno Autístico/fisiopatología , Sitios de Unión/genética , Proteína de Unión a CREB/metabolismo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/fisiopatología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Histona Acetiltransferasas/metabolismo , Humanos , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Actividad Motora/fisiología , Fenotipo , Síndrome de Rubinstein-Taybi/enzimología , Síndrome de Rubinstein-Taybi/fisiopatología , Conducta Social
8.
Development ; 141(3): 538-47, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24449835

RESUMEN

The liver has multiple functions that preserve homeostasis. Liver diseases are debilitating, costly and often result in death. Elucidating the developmental mechanisms that establish the liver's architecture or generate the cellular diversity of this organ should help advance the prevention, diagnosis and treatment of hepatic diseases. We previously reported that migration of early hepatic precursors away from the gut epithelium requires the activity of the homeobox gene Prox1. Here, we show that Prox1 is a novel regulator of cell differentiation and morphogenesis during hepatogenesis. Prox1 ablation in bipotent hepatoblasts dramatically reduced the expression of multiple hepatocyte genes and led to very defective hepatocyte morphogenesis. As a result, abnormal epithelial structures expressing hepatocyte and cholangiocyte markers or resembling ectopic bile ducts developed in the Prox1-deficient liver parenchyma. By contrast, excessive commitment of hepatoblasts into cholangiocytes, premature intrahepatic bile duct morphogenesis, and biliary hyperplasia occurred in periportal areas of Prox1-deficient livers. Together, these abnormalities indicate that Prox1 activity is necessary to correctly allocate cell fates in liver precursors. These results increase our understanding of differentiation anomalies in pathological conditions and will contribute to improving stem cell protocols in which differentiation is directed towards hepatocytes and cholangiocytes.


Asunto(s)
Conductos Biliares/patología , Linaje de la Célula , Eliminación de Gen , Hepatocitos/metabolismo , Hepatocitos/patología , Células Madre/metabolismo , Proteínas Supresoras de Tumor/deficiencia , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Recuento de Células , Linaje de la Célula/genética , Coristoma/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 4 del Hepatocito/metabolismo , Proteínas de Homeodominio/metabolismo , Hígado/embriología , Hígado/metabolismo , Ratones , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/genética , Células Madre/patología , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Supresoras de Tumor/metabolismo
9.
Aging (Albany NY) ; 4(4): 247-55, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22511639

RESUMEN

Protein lysine acetyltransferases (HATs or PATs) acetylate histones and other proteins, and are principally modeled as transcriptional coactivators. CREB binding protein (CBP, CREBBP) and its paralog p300 (EP300) constitute the KAT3 family of HATs in mammals, which has mostly unique sequence identity compared to other HAT families. Although studies in yeast show that many histone mutations cause modest or specific phenotypes, similar studies are impractical in mammals and it remains uncertain if histone acetylation is the primary physiological function for CBP/p300. Nonetheless, CBP and p300 mutations in humans and mice show that these coactivators have important roles in development, physiology, and disease, possibly because CBP and p300 act as network "hubs" with more than 400 described protein interaction partners. Analysis of CBP and p300 mutant mouse fibroblasts reveals CBP/p300 are together chiefly responsible for the global acetylation of histone H3 residues K18 and K27, and contribute to other locus-specific histone acetylation events. CBP/p300 can also be important for transcription, but the recruitment of CBP/p300 and their associated histone acetylation marks do not absolutely correlate with a requirement for gene activation. Rather, it appears that target gene context (e.g. DNA sequence) influences the extent to which CBP and p300 are necessary for transcription.


Asunto(s)
Fibroblastos/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Regiones Promotoras Genéticas/fisiología , Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Expresión Génica , Histona Acetiltransferasas/genética , Histonas/genética , Humanos , Ratones , Mutación , Activación Transcripcional , Factores de Transcripción p300-CBP/genética
10.
Cell Metab ; 14(2): 219-30, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21803292

RESUMEN

Opposing activities of acetyltransferases and deacetylases help regulate energy balance. Mice heterozygous for the acetyltransferase CREB binding protein (CBP) are lean and insulin sensitized, but how CBP regulates energy homeostasis is unclear. In one model, the main CBP interaction with the glucagon-responsive factor CREB is not limiting for liver gluconeogenesis, whereas a second model posits that Ser436 in the CH1 (TAZ1) domain of CBP is required for insulin and the antidiabetic drug metformin to inhibit CREB-mediated liver gluconeogenesis. Here we show that conditional knockout of CBP in liver does not decrease fasting blood glucose or gluconeogenic gene expression, consistent with the first model. However, mice in which the CBP CH1 domain structure is disrupted by deleting residues 342-393 (ΔCH1) are lean and insulin sensitized, as are p300ΔCH1 mutants. CBP(ΔCH1/ΔCH1) mice remain metformin responsive. An intact CH1 domain is thus necessary for normal energy storage, but not for the blood glucose-lowering actions of insulin and metformin.


Asunto(s)
Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Metabolismo Energético , Delgadez/enzimología , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo , Animales , Glucemia/genética , Células Cultivadas , Dieta , Femenino , Gluconeogénesis/genética , Insulina/metabolismo , Masculino , Metformina/metabolismo , Ratones , Ratones Noqueados , Delgadez/genética
12.
Epigenetics ; 5(1): 9-15, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20110770

RESUMEN

One general principle of gene regulation is that DNA-binding transcription factors modulate transcription by recruiting cofactors that modify histones and chromatin structure. A second implicit principle is that a particular cofactor is necessary at all the target genes where the cofactor is recruited. Increasingly, these principles do not appear to be absolute, as experimentally defined relationships between transcription, cofactors and chromatin modification grow in complexity. The KAT3 histone acetyltransferases CREB binding protein (CBP) and p300 have at least 400 interacting protein partners, thereby acting as hubs in gene regulatory networks. Studies using mutant primary cells indicate that the occurrence of CBP and p300 at any given target gene sometimes correlates with, rather than dictates transcription. This suggests that there are unexpected levels of redundancy between CBP/p300 and other unrelated coactivators, or that CBP/p300 recruitment may sometimes be coincidental. A transcription factor may therefore recruit the same group of coactivators as part of its "toolbox", but it is the characteristics of the individual target gene that determine which coactivation "tools" are required for its transcription.


Asunto(s)
ADN/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Animales , Cromatina/metabolismo , ADN/química , Redes Reguladoras de Genes , Histonas/metabolismo , Humanos , Modelos Biológicos , Modelos Genéticos , Familia de Multigenes , Mutación , Filogenia , Unión Proteica , Transcripción Genética
13.
J Clin Invest ; 115(4): 940-50, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15841180

RESUMEN

Insulin receptor substrate 2 (Irs2) plays complex roles in energy homeostasis. We generated mice lacking Irs2 in beta cells and a population of hypothalamic neurons (RIPCreIrs2KO), in all neurons (NesCreIrs2KO), and in proopiomelanocortin neurons (POMCCreIrs2KO) to determine the role of Irs2 in the CNS and beta cell. RIPCreIrs2KO mice displayed impaired glucose tolerance and reduced beta cell mass. Overt diabetes did not ensue, because beta cells escaping Cre-mediated recombination progressively populated islets. RIPCreIrs2KO and NesCreIrs2KO mice displayed hyperphagia, obesity, and increased body length, which suggests altered melanocortin action. POMCCreIrs2KO mice did not display this phenotype. RIPCreIrs2KO and NesCreIrs2KO mice retained leptin sensitivity, which suggests that CNS Irs2 pathways are not required for leptin action. NesCreIrs2KO and POMCCreIrs2KO mice did not display reduced beta cell mass, but NesCreIrs2KO mice displayed mild abnormalities of glucose homeostasis. RIPCre neurons did not express POMC or neuropeptide Y. Insulin and a melanocortin agonist depolarized RIPCre neurons, whereas leptin was ineffective. Insulin hyperpolarized and leptin depolarized POMC neurons. Our findings demonstrate a critical role for IRS2 in beta cell and hypothalamic function and provide insights into the role of RIPCre neurons, a distinct hypothalamic neuronal population, in growth and energy homeostasis.


Asunto(s)
Metabolismo Energético , Homeostasis , Hipotálamo/metabolismo , Islotes Pancreáticos/metabolismo , Neuronas/metabolismo , Fosfoproteínas/metabolismo , Animales , Peso Corporal , Electrofisiología , Genotipo , Glucosa/metabolismo , Hipotálamo/citología , Insulina/administración & dosificación , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular , Islotes Pancreáticos/citología , Leptina/administración & dosificación , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Fosfoproteínas/genética , Proopiomelanocortina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
14.
Anal Biochem ; 320(1): 66-74, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12895470

RESUMEN

The tumor suppressor protein, pRb, regulates progression through the G1 phase of the cell cycle by its ability to bind to and regulate the activity of a variety of transcription factors. This function of pRb is disabled through its phosphorylation by the cyclin-dependent kinase (CDK) family of serine/threonine kinases. In many human cancers, genetic alteration such as loss of CDK inhibitor function and deregulated G1 cyclin expression leads to inappropriate phosphorylation and hence inactivation of this tumor suppressor. Identification of cell-permeable small molecules that block pRb phosphorylation in these tumors could therefore lead to development of an effective anticancer treatment. As a result, we have developed a high-throughput assay to detect changes in the level of pRb phosphorylation in cells. Signal detection is by a time-resolved fluorescence-based cellular immunosorbant assay on a fixed monolayer of cells. This comprises a mouse monoclonal antibody that recognizes the phosphorylated form of serine 608 on pRb, a known site of CDK phosphorylation, and a Europium-labeled secondary antibody for signal detection. The assay is reproducible and amenable to automation and has been used to screen 2000 compounds in a search for cell-permeable small molecules that will block pRb phosphorylation.


Asunto(s)
Fluoroinmunoensayo/métodos , Proteína de Retinoblastoma/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Línea Celular Tumoral , Membrana Celular/química , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Ratones , Fosforilación , Purinas/farmacología , Proteína de Retinoblastoma/antagonistas & inhibidores , Roscovitina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...